You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 May 2005A study on MR fluids subjected to high shear rates and high velocities
This study intends to identify the behavior of MR fluid subject to high rates of shear and high flow velocities. A high shear rheometer is built which allows for the high velocity testing of MR fluids. The rheometer is capable of fluid velocities ranging from 1 m/s to 37 m/s, with corresponding shear rates ranging from 0.14x105 s-1 to 2.5x105 s-1. Fluid behavior is characterized in both the off-state and the on-state. In the off-state, the MR fluid was shown to exhibit nearly Newtonian post-yield behavior. A slight thickening was observed for growing shear rates. This slight thickening can be attributed to the behavior of the carrier fluid. The purpose of the on-state testing was to characterize the MR effect at high flow velocities. MR fluid was run through the rheometer at various flow velocities and a number of magnetic field strengths. The term "dwell time" is introduced and defined as the amount of time the fluid spends in the presence of a magnetic field. Two active valve lengths were considered, which when coupled to the fluid velocities, generated dwell times ranging from 12 ms to 0.18 ms. The yield stress was found from the experimental measurements and the results indicate that the magnitude of the yield stress is sensitive to fluid dwell time. The results from the on-state testing imply that high velocity applications may be subject to diminished controllability for falling dwell times.
The alert did not successfully save. Please try again later.
Fernando D. Goncalves, Mehdi Ahmadian, "A study on MR fluids subjected to high shear rates and high velocities," Proc. SPIE 5760, Smart Structures and Materials 2005: Damping and Isolation, (16 May 2005); https://doi.org/10.1117/12.598530