Paper
16 May 2005 Chamber-core structures for fairing acoustic mitigation
Emil Ardelean, Andrew Williams, Nicholas Korshin, Kyle Henderson, Steven Lane, Robert Richard
Author Affiliations +
Abstract
Extreme noise and vibration levels at lift-off and during ascent can damage sensitive payload components. Recently, the Air Force Research Laboratory, Space Vehicles Directorate has investigated a composite structure fabrication approach, called chamber-core, for building payload fairings. Chamber-core offers a strong, lightweight structure with inherent noise attenuation characteristics. It uses one-inch square axial tubes that are sandwiched between inner and outer face-sheets to form a cylindrical fairing structure. These hollow tubes can be used as acoustic dampers to attenuate the amplitude response of low frequency acoustic resonances within the fairing’s volume. A cylindrical, graphite-epoxy chamber-core structure was built to study noise transmission characteristics and to quantify the achievable performance improvement. The cylinder was tested in a semi-reverberant acoustics laboratory using bandlimited random noise at sound pressure levels up to 110 dB. The performance was measured using external and internal microphones. The noise reduction was computed as the ratio of the spatially averaged external response to the spatially averaged interior response. The noise reduction provided by the chamber-core cylinder was measured over three bandwidths, 20 Hz to 500 Hz, 20 Hz to 2000 Hz, and 20 Hz to 5000 Hz. For the bare cylinder with no acoustic resonators, the structure provided approximately 13 dB of attenuation over the 20 Hz to 500 Hz bandwidth. With the axial tubes acting as acoustic resonators at various frequencies over the bandwidth, the noise reduction provided by the cylinder increased to 18.2 dB, an overall increase of 4.8 dB over the bandwidth. Narrow-band reductions greater than 10 dB were observed at specific low frequency acoustic resonances. This was accomplished with virtually no added mass to the composite cylinder.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Emil Ardelean, Andrew Williams, Nicholas Korshin, Kyle Henderson, Steven Lane, and Robert Richard "Chamber-core structures for fairing acoustic mitigation", Proc. SPIE 5760, Smart Structures and Materials 2005: Damping and Isolation, (16 May 2005); https://doi.org/10.1117/12.600125
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Resonators

Acoustics

Denoising

Neck

Composites

Analytical research

Signal attenuation

Back to Top