You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2005Airfoil drag elimination and stall suppression via piezoelectric dynamic tangential synthetic jet actuators
This paper describes a new method for drag elimination and stall suppression via tangential synthetic jet actuators. This boundary layer control (BLC) method is shown to perform as well as continuous and normal synthetic jet BLC methods but without fouling difficulties, system-level complexity or extreme sensitivity to Reynolds number. Classical laminated plate theory (CLPT) models of the piezoelectric actuators were used to estimate diaphragm deflections and volume per stroke. A 12” (30.5cm) chord, 6” (15.3cm) span NACA 0012 profile wing section was designed with three unimorph 10 mil (254μm) thick, 3.25” (8.23cm) square piezoelectric diaphragm plenums and five 1 mil (25μm) thick stainless steel valves spaced from 15%c to the trailing edge of the airfoil. Static bench testing showed good correlation between CLPT and experiment. Plenum volume per stroke ranged up to 5cc at 500 V/mm field strength. Dynamic testing showed resonance peaks near 270 Hz, leading to flux rates of more than 60 cu in/s (1 l/s) through the dynamic valves. Wind tunnel testing was conducted at speeds up through 13.1 ft/s (4 m/s) showing more than doubling of Clmax. At low angles of attack and high flux rates, the airfoil produced net thrust for less than 4.1W of electrical power consumption.
The alert did not successfully save. Please try again later.
Ron Barrett, Jeremy Corpening, Christopher Reasonover, "Airfoil drag elimination and stall suppression via piezoelectric dynamic tangential synthetic jet actuators," Proc. SPIE 5764, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, (17 May 2005); https://doi.org/10.1117/12.599094