You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2005Structural health monitoring system using FBG sensor for simultaneous detection of acceleration and strain
Structural health monitoring systems are being recognized as effective tools to minimize maintenance costs for civil infrastructures. Recently, many damage evaluation methods for the systems have been proposed. For example, natural frequencies were used for global monitoring, and strain measurement for local monitoring. In this study, a novel monitoring system that measures two physical values simultaneously, acceleration and strain, by a single sensor is proposed. At first, a hybrid FBG sensor for monitoring strain and acceleration is proposed. The sensor consists of an FBG element and a mass to form a vibration system. Then, a monitoring system using the hybrid FBG sensor and support vector machines is proposed. Many damage scenarios for a moment-resistant frame were tested. The results show that the sensitivities of strain and natural frequency are significantly different. It is confirmed that combined use of acceleration and strain measurement enhances the performance of the system.
Hiroshi Hayano andAkira Mita
"Structural health monitoring system using FBG sensor for simultaneous detection of acceleration and strain", Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.598639
The alert did not successfully save. Please try again later.
Hiroshi Hayano, Akira Mita, "Structural health monitoring system using FBG sensor for simultaneous detection of acceleration and strain," Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.598639