You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 May 2005Fatigue crack propagation of magnesium alloy in biaxial stress fields
Fatigue crack propagation tests of magnesium alloy were conducted under conditions of biaxial and uniaxial loading by using a cruciform specimen in a biaxial fatigue machine, in order to investigate the effect of non-singular stress cycling on the fatigue crack growth properties ΔKI -da/dN. The Magnesium alloys (AZ31B-O) used for this research are 2.5mm thickness plates. There are four different kinds of plates due to their heat treatment conditions. These conditions are (a) with no heat treatments (AZ31B-O), (b) 200-degree 2 hours (AZ31B-200), (c) 350-degree 2 hours (AZ31B-350), and (d) 430-degree 2 hours (AZ31B-430). From these comprehensive experiments, the remarkable effect was found in the specific biaxial load stress ratio σx0/σy0 on ΔKI -da/dN relation. When biaxial load stress ratio was 0.5, it turned out that the fatigue crack propagation rate of a magnesium alloy becomes very slow. Of course, in other biaxial load stress ratios, fatigue crack propagation velocity was influenced to some extent. It turned out that fatigue crack propagation rate becomes fast when a biaxial load stress ratio is minus, and it becomes slow when a biaxial load stress ratio is plus. Some discussion is made on the effect of microstructure on fatigue crack propagation of magnesium alloy in a biaxial stress field.
Yasumi Itoh andAkira Shimamoto
"Fatigue crack propagation of magnesium alloy in biaxial stress fields", Proc. SPIE 5769, Nondestructive Detection and Measurement for Homeland Security III, (9 May 2005); https://doi.org/10.1117/12.599238
The alert did not successfully save. Please try again later.
Yasumi Itoh, Akira Shimamoto, "Fatigue crack propagation of magnesium alloy in biaxial stress fields," Proc. SPIE 5769, Nondestructive Detection and Measurement for Homeland Security III, (9 May 2005); https://doi.org/10.1117/12.599238