You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 May 2005Design of lidar-based sensors and algorithms for determining the relative motion of an impaired spacecraft
In recent years, NASA's interest in autonomous rendezvous and docking operations with impaired or non-cooperative spacecraft has grown extensively. In order to maneuver and dock, a servicing spacecraft must be able to determine the relative 6 degree-of-freedom (6 DOF) motion between the vehicle and the target spacecraft. One method to determine the relative 6 DOF position and attitude is through lidar imaging. A flash lidar sensor system can capture close-proximity range images of the target spacecraft, producing 3-D point cloud data sets. These sequentially collected point-cloud data sets can be compared to a point cloud image of the target at a known location using a point correspondence-less variant of the Iterative Closest Points (ICP) algorithm to determine the relative 6 DOF displacements. Simulation experiments indicate that the MSE, angular error, mean, and standard deviations for position and orientation estimates did not vary as a function of position and attitude. Furthermore, the computational times required by this algorithm were comparable to previously reported variants of the point-to-point and point-to-plane based ICP variants.
Ronald C. Fenton,R. Rees Fullmer, andRobert T. Pack
"Design of lidar-based sensors and algorithms for determining the relative motion of an impaired spacecraft", Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); https://doi.org/10.1117/12.602753
The alert did not successfully save. Please try again later.
Ronald C. Fenton, R. Rees Fullmer, Robert T. Pack, "Design of lidar-based sensors and algorithms for determining the relative motion of an impaired spacecraft," Proc. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, (20 May 2005); https://doi.org/10.1117/12.602753