You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 June 2005Estimation of ground surface topography and velocity model by SAR-GPR and its application to landmine detection
The height variation of ground surface and incorrect velocity will affect imaging processing of landmine. To eliminate these effects, ground surface topography and velocity model are needed. For effective detection of landmines, a stepped-frequency continuous-wave array antenna ground penetrating radar system, called SAR-GPR, was developed. Based on multi-offset common middle point (CMP) data acquired by SAR-GPR, we describe a velocity model estimation method using velocity spectrum technique. Also after pre-stack migration, the ground surface can be identified clearly. To compensate landmine imaging for the effect created by height variation, the ground surface displacement, a kind of static correction technique, is used based on the information of ground surface topography and velocity model. To solve the problem of incorrect velocity, we present a continuous variable root-mean-square velocity based on the velocity model. The velocity is used in normal moveout correction (NMO) to adjust the time delay of multi-offset data, and also applied to migration for reconstruction of landmine image. After the application of ground surface topography and velocity model to data processing, we could obtain good landmine images in experiment.
The alert did not successfully save. Please try again later.
Xuan Feng, Zheng-shu Zhou, Takao Kobayashi, Timofei G. Savelyev, Jun Fujiwara, Motoyuki Sato, "Estimation of ground surface topography and velocity model by SAR-GPR and its application to landmine detection," Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); https://doi.org/10.1117/12.603235