Paper
10 June 2005 Volterra fusion of processing strings for automated sea mine classification in shallow water
Author Affiliations +
Abstract
An improved sea mine computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The overall CAD/CAC processing string consists of pre-processing, adaptive clutter filtering (ACF), normalization, detection, feature extraction, optimal subset feature selection, feature orthogonalization, classification and fusion processing blocks. The range-dimension ACF is matched both to average highlight and shadow information, while also adaptively suppressing background clutter. For each detected object, features are extracted and processed through an orthogonalization transformation, enabling an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule, in the orthogonal feature space domain. The classified objects of 4 distinct processing strings are fused using the classification confidence values as features and either “M-out-of-N” or LLRT-based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new shallow water high-resolution sonar imagery data. The processing string detection and classification parameters were tuned and the string classification performance was optimized, by appropriately selecting a subset of the original feature set. Two significant improvements were made to the CAD/CAC processing string by employing sub-image adaptive clutter filtering (SACF) and utilizing a repeated application of the subset feature selection / feature orthogonalization / LLRT classification blocks. A new nonlinear (Volterra) feature LLRT fusion algorithm was developed. It was shown that this Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms the “M-out-of-N” and baseline LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call all mine targets while maintaining a very low false alarm rate.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Tom Aridgides, Manuel Fernandez, and Gerald j. Dobeck "Volterra fusion of processing strings for automated sea mine classification in shallow water", Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); https://doi.org/10.1117/12.602116
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Detection and tracking algorithms

Image processing

Algorithm development

Feature extraction

Mining

Digital filtering

Naval mines

Back to Top