Paper
1 June 2005 A method for quantification of gas plumes in thermal hyperspectral imagery
Author Affiliations +
Abstract
Several commercial and environmental applications require the detection and quantification of gaseous plumes from airborne platforms. Unlike active LIDAR imaging in a DIAL system, the signal received by a passive sensor depends not only on the gas concentration pathlength, but the temperature contrast between the gas column and the background as well. Further complicating the problem, the at-sensor radiance is a function of a non-linear combination of the gas concentration and temperature, both inherently unknown. A method is presented to estimate the gas concentration pathlength and temperature from LWIR Hyperspectral Imagery (HSI) without any assumptions about the gas properties or background radiance. A non-linear model is fit to the data using a Levenberg-Marquardt fitting procedure. This technique requires only a priori knowledge of the gas species present in the pixel of interest to reduce the complexity of the model. The resulting concentration pathlength and temperature are reported on a per-pixel basis. Results are shown for application to synthetic imagery created with the DIRSIG simulation. Concentration pathlength results are promising for a gas with strong, moderately broad features (Freon) but less so for a gas with weaker, narrow features (NH3). In neither case is the solution to the gas temperature satisfactory. This is further demonstrated through examination of the residual space in which the minimization is performed where it is shown that a unique minimum is not present in the space.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David W. Messinger "A method for quantification of gas plumes in thermal hyperspectral imagery", Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, (1 June 2005); https://doi.org/10.1117/12.603585
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication and 3 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Hyperspectral imaging

Data modeling

Imaging systems

Environmental sensing

LIDAR

Long wavelength infrared

Passive sensors

Back to Top