You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2005Probability densities and confidence intervals for target recognition performance metrics
Probability densities for target recognition performance metrics are developed. These densities assist in evaluation of systems under test (SUTs), which are systems that predict the presence of a target after examination of an input. After such examination, a SUT assigns a score that indicates the predicted likelihood that a target is present. From scores for a series of many inputs, the suitability of a SUT can be evaluated through performance metrics such as the receiver operating characteristic (ROC) and the confidence error (CE) generation curve. The ROC is a metric that describes how well the probability densities of target and clutter scores are separated, where clutter refers to the absence of target. The CE generation curve and the corresponding scalar CE is a metric that evaluates the accuracy of the score. Since only a limited number of test scores (scores for which the truth state is known by the evaluator) is typically available to evaluate a SUT, it is critical to quantify uncertainty in the performance metric results. A process for estimating such uncertainty through probability densities for the performance metrics is examined here. Once the probability densities are developed, confidence intervals are also obtained. The process that develops the densities and related confidence intervals is implemented in a fully Bayesian manner. Two approaches are examined, one which makes initial assumptions regarding the form of the underlying target and clutter densities and a second approach which avoids such assumptions. The target and clutter density approach is applicable to additional performance metrics.
The alert did not successfully save. Please try again later.
David R. Parker, Steven C. Gustafson, Timothy D. Ross, "Probability densities and confidence intervals for target recognition performance metrics," Proc. SPIE 5808, Algorithms for Synthetic Aperture Radar Imagery XII, (19 May 2005); https://doi.org/10.1117/12.602322