You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 March 2005A performance metric for belief fusion techniques
In this paper it is illustrated how Bayes equations and frequency data may use as a measure of performance for belief fusion algorithms. A review of Bayes equations for single and multiple sources is provided. A simple performance measure is then calculated and applied to some belief fusion examples from the literature. Their performance measures are qualitatively similar, but the quantitative differences among these techniques appear to be arbitrary.
Mark A. Friesel
"A performance metric for belief fusion techniques", Proc. SPIE 5813, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2005, (28 March 2005); https://doi.org/10.1117/12.608685
The alert did not successfully save. Please try again later.
Mark A. Friesel, "A performance metric for belief fusion techniques," Proc. SPIE 5813, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2005, (28 March 2005); https://doi.org/10.1117/12.608685