You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 June 2005Spectrum-sliced broadband source intensity noise reduction using semiconductor optical amplifier non-linear gain compression
Conventional wavelength-division multiplexed (WDM) fiber optic communication systems employ semiconductor lasers operating at discrete wavelengths as carriers for the different data channels. Spectrum-slicing provides an attractive lowcost alternative by utilising spectral slices from a single broadband source, which are then fed to intensity modulators to encode data onto these slices. Such WDM spectrum-sliced systems have the potential for use in local area network fiber communication systems. A key drawback of spectrum sliced systems is the inherently high degree of excess intensity noise, which can impose severe limits on achievable system performance. In this paper we utilise the non-linear gain compression of a semiconductor optical amplifier (SOA) to suppress intensity noise of a spectrum sliced signal from a broadband source. The effects of SOA input power and bias are investigated and system experiments are carried out at 2.5 Gb/s.
The alert did not successfully save. Please try again later.
David Forsyth, Ivan Evans, Michael Connelly, "Spectrum-sliced broadband source intensity noise reduction using semiconductor optical amplifier non-linear gain compression," Proc. SPIE 5825, Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks, (3 June 2005); https://doi.org/10.1117/12.603324