You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 June 2005Mechanico-chemical interaction of SWNTs with different host matrices evidenced by SERS spectroscopy
Surface enhanced Raman scattering (SERS) with 676.4 and 1064 nm excitations was used to investigate single-walled carbon nanotubes (SWNTs) compressed non-hydrostatically at 0.58 GPa, alone and dispersed into chemical reactive and non-reactive (SiO2 and Al2O3) host matrices. As reactive host matrices, we used inorganic compounds (KI and Ag microparticles) and aromatic hydrocarbons (biphenyl, naphthalene, p-terphenyl, phenantrene). SERS spectra indicate that by compression, SWNTs break in fragments of different size, which in turn can react or not with the host matrix. Various mechanico-chemical reactions take place. In inorganic matrices such as KI and Ag, donor-acceptor complexes are formed. Regardless of aromatic hydrocarbons type used as organic matrices, i.e. with isolated or condensed phenyl rings, a non-covalent functionalization of SWNTs is produced. Using aromatic hydrocarbons with isolated phenyl rings like biphenyl or p-terphenyl, an ionic and covalent functionalization of SWNT fragments is demonstrated by the appearance of new Raman bands at 1160 and 1458 cm-1, the latter being associated with the Ag(2) pentagonal pinch mode observed regularly in Raman spectra of C60 fullerenes. The signature for the appearance of short fragments of carbon nanotubes, behaving as closed-shell fullerenes, is observed also in photoluminescence spectra carried out on SWNTs compressed in biphenyl and p-terphenyl matrix. Additional proofs are found by transmission electron microscopy (TEM) investigations.
The alert did not successfully save. Please try again later.
Serge Lefrant, Mihaela Baibarac, Ioan Baltog, Christine Godon, Jean-Yves Mevellec, Lucian Mihut, "Mechanico-chemical interaction of SWNTs with different host matrices evidenced by SERS spectroscopy," Proc. SPIE 5838, Nanotechnology II, (28 June 2005); https://doi.org/10.1117/12.608098