You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 June 2005A novel robust optimization method of exposure and mask conditions for beyond 65 nm-node lithography
Parameter optimization is a key issue to develop low-k1 lithography processes, in which the number of control and error factors has been increasing. This holds especially true for alternating phase-shifting mask (alt-PSM) techniques; i.e., for this technique, not only exposure conditions but also mask structures should be optimized under various error factors (or noise factors), such as defocus, dose fluctuations, lens aberrations, mask making errors and so on. This paper describes a novel method of performing such optimization, which is developed based on a method of design of experiments (DOEs). Stabilities of target performance for various combinations of parameters are simulated by varying noise factor levels which are assigned to an orthogonal array. Optimum values of parameters are determined so as to maximize the stabilities of target performance.
This method is applied to a 45-nm node alt-PSM (alternating phase-shifting mask) technique. Optical conditions, such as NA (numerical aperture) and σ-value, and mask structures, such as trench depth and undercut size, are optimized under various noise factors by applying our method for optimization. As a result, high stability of critical dimension (CD) is obtained together with sufficient suppression of image placement errors. The optimized result is further verified by statistic calculations. Finally, we conclude that our method is a very powerful tool to simultaneously optimize lithographic conditions for low-k1 lithography processes.
The alert did not successfully save. Please try again later.
Koichi Takeuchi, Kazuya Iwase, Ken Ozawa, Fumikatsu Uesawa, "A novel robust optimization method of exposure and mask conditions for beyond 65 nm-node lithography," Proc. SPIE 5853, Photomask and Next-Generation Lithography Mask Technology XII, (28 June 2005); https://doi.org/10.1117/12.617455