You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 May 2005Properties of PCF-based long period gratings
In a long period grating (LPG) made on a silica-based single material photonic crystal fiber (PCF), the effect of material dispersion on the resonance wavelength of the LPG is negligible. The resonance wavelength, the period and length of the LPG, and the diameter and pitch of the air -hole lattice of the PCF are found to obey a scaling law. Simulations show that the resonance wavelength has a non-monotonic dependence on the grating period and, for a particular grating period, there could exist dual resonance wavelengths and hence double transmission dips due to phase matching between the fundamental core mode and a cladding mode simultaneously at two wavelengths. This phenomenon may be explored for novel devices and sensor applications.
The alert did not successfully save. Please try again later.
Zhi Wang, Jian Ju, Wei Jin, K. S. Chiang, "Properties of PCF-based long period gratings," Proc. SPIE 5855, 17th International Conference on Optical Fibre Sensors, (23 May 2005); https://doi.org/10.1117/12.623401