You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 August 2005Hysteretic electro-optic response in ferroelectric thin films
A model is developed to explain the hysteretic electric field dependence of the electrooptic coefficient in ferroelectric thin films. The reversible electric polarization and the tunable dielectric susceptibility of the ferroelectric thin film are proposed to explain the hysteretic ρ-E (electrooptic coefficient- applied electric field) loop. An empirical model used in ferroelectric capacitors to predict the high frequency C-V curve is utilized here to find the field dependence of the nonlinear susceptibility. The tunable susceptibility can also explain the peaked characteristics of the ρ-E loop. We also show that the linear electrooptic effect in ferroelectric thin films could produce the pseudo-quadratic electrooptic effect on field-induced birefringence as a result of the switchable spontaneous polarization of ferroelectrics. Thus, a careful interpretation of the field-induced birefringence is required to avoid misleading conclusions. This model provides a fundamental understanding to the tunability of the electrooptic coefficient and is useful for the electrooptic characterization of the ferroelectric thin films.
The alert did not successfully save. Please try again later.
Ding-Yuan Chen, Jamie D. Phillips, "Hysteretic electro-optic response in ferroelectric thin films," Proc. SPIE 5867, Optical Modeling and Performance Predictions II, 58670B (19 August 2005); https://doi.org/10.1117/12.613013