You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 August 2005Development of a non-contacting extensometer using digital speckle correlation
A new extensometer has been developed which needs no attachment of line markers or mechanical attachment on a specimen. An expanded beam from a laser diode is incident on the marker position of a specimen which is imaged by a lens on a C-MOS image sensor. The resultant laser-speckle patterns are analyzed by two-dimensional digital correlation at the rate of 20 frames per second. It provides speckle displacement by means of a phase-only-correlation device which uses only phase of Fourier transform of the image. In-plane displacement of the marker position is tracked by moving a head containing the laser and the image sensor under the feedback control that compensates for the speckle displacement detected. Two positions on the specimen are tracked by a pair of the heads. From rubber specimens which had a marker distance of 20 mm and were elongated at the velocity of 500 mm/sec we observed good agreement in load-strain curves with the results from the conventional methods using mechanical trackers.
The alert did not successfully save. Please try again later.
Ichirou Yamaguchi, Koichi Kobayashi, Takashi Ida, Masayuki Yokota, "Development of a non-contacting extensometer using digital speckle correlation," Proc. SPIE 5880, Optical Diagnostics, 58800E (18 August 2005); https://doi.org/10.1117/12.618290