You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 August 2005Real time measurement of the refractive index of petroleum samples in a wide temperature range
Emulsions of heavy oils in water are prepared to allow transportation of highly viscous oils over long distances. Their stability is currently assured by addition of surfactants, which cover the suspended oil particles with an electrically charged protective layer. The oil refractive index, which is related to the oil electrical properties, is therefore an important parameter in emulsion stability theory. In addition, as oils extracted from different wells have different refractive index, knowledge of the latter helps to identify oil samples. Basic principles and operation of an optoelectronic setup allowing real-time measurement of the real part of the refractive index (n) of heavy oil samples as a function of temperature (T) in a wide temperature range are presented. The setup consists of a CW laser beam which locally heats the oil sample (so inducing a time-growing temperature gradient and local deformation of the liquid surface) and an optoelectronic system which records as a function of heating time (t) the time-varying divergences of light beams reflected by and transmitted through the sample. As the latter cited are mathematically related to the
refractive index value, function n(t) is thus experimentally determined. The sample temperature (T) is simultaneously recorded as a function of heating time (t) by means of a thermographic camera, thus obtaining function T(t). Combining both plots [n(t),T(t)] the function n(T) is determined in a few minutes in the whole temperature range.
The alert did not successfully save. Please try again later.
German Da Costa, Felix Mosqueda, Juan Enrique Parra, "Real time measurement of the refractive index of petroleum samples in a wide temperature range," Proc. SPIE 5880, Optical Diagnostics, 58800Y (18 August 2005); https://doi.org/10.1117/12.614460