You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 August 2005Control model for a continuous face sheet, MEMS based deformable membrane mirror
Small Micro-Electro-Mechanical Systems (MEMS) deformable mirror (DM) technology is of great interest to the adaptive optics (AO) community. These MEMS-DM's are being considered for many conventional AO applications since they posses some advantages over conventional DM's. The MEMS-DM technology is driven by the expectation of achieving improved performance with lower costs, low electrical power, high number of actuators, high production rates, and large reductions in structural mass and volume. In addition to the imaging community, the directed energy community is also interested in taking advantage of the characteristics which MEMS-DM's offer.
Unlike imaging, the optical fill-factor of a high-energy laser DM, has to be essentially 100 percent! Many modern MEMS-DM designs consist of small, lightweight, segmented mirrors that can be precisely controlled. For high-energy laser applications, the MEMS DM's should have a continuous reflective face-sheet with no gaps. This continuous reflective face-sheet must include high-energy laser coatings, which render the face sheet very stiff. This is a new challenge for MEMS-DM's, which has not previously been addressed. The Air Force Research Laboratory has proposed to meet this challenge with several continuous face-sheet high-energy laser MEMS-DM's designs. This paper will give a generic description of a MEMS-DM computer model. The research goal is to develop a MEMS-DM model for closed loop control of a high-energy laser, MEMS-DM adaptive optics application.
The alert did not successfully save. Please try again later.
R. A. Carreras, D. K. Marker, J. M. Wilkes, "Control model for a continuous face sheet, MEMS based deformable membrane mirror," Proc. SPIE 5894, Advanced Wavefront Control: Methods, Devices, and Applications III, 58940W (22 August 2005); https://doi.org/10.1117/12.621250