You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 September 2005Polymeric nanocomposite for memory application
Recently conjugated polymers and conjugated organic molecules have drawn a great deal of attention, since they are uniquely suited for thin film, large area, mechanically flexible devices. On the other hand, polymer/inorganic nanocomposite have also been pursued to deliver unique electronic properties in various device applications such as organic light-emitting diodes, organic thin film transistors, and solar cells. Here we demonstrate a nanocomposite based on polyaniline nanofibers decorated with gold nanoparticles and apply this composite into memory devices. The electronic property shows an electric bistable effect in a two terminal sandwiched structure. These two bistable states have different conductivities by three orders of magnitude. The mechanism is likely involving electric-field induced charge transfer between the polymer and nanoparticles. This nanocomposite material provides a unique functionality and possibility to open a new direction for future organic electronics.
The alert did not successfully save. Please try again later.
Ricky J. Tseng, Jianyong Ouyang, Jiaxing Huang, Richard B. Kaner, Yang Yang, "Polymeric nanocomposite for memory application," Proc. SPIE 5940, Organic Field-Effect Transistors IV, 59401J (23 September 2005); https://doi.org/10.1117/12.618607