You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 September 2005Self-organized liquid photonic crystals
Self-organization drives the system to its internal attractors and so it is particularly effective in the soft matter. Self-organized systems are created in the presence of two at least simultaneous and competitive interactions of comparable strength. Such phenomena are the most exciting features of the liquid-crystal state and are frequently observed in multicomponent and multiphase systems as spontaneous periodic superstructures. If some of the periods of the superstructure are comparable to the wavelength of light and a sort of photonic band gap can be determined in it, then the superstructure behaves as a photonic crystal. In chiral structures, the band of a total reflection of circularly polarized light can play the role of an angle-dependent photonic band gap. The mechanisms of the formation of the superstructures as the result of minimization of the free energy, including cross coupling between gradients of the director field around the disclinations and gradients of the concentration of dopants (the thermodynamic force of a concentration gradient), are discussed here. The experimentally observed stable patterns, e.g., spontaneous diffraction gratings with uniformly oriented helical axis of N* at weak anchoring, two-dimensional hexagonal arrays of disclination lines perpendicular to nematic layers doped with small amount of chiral compound (bubble domains), and oriented arrays of TGBA in chiral smectics, are presented.
The alert did not successfully save. Please try again later.
A. Adamczyk, "Self-organized liquid photonic crystals," Proc. SPIE 5947, Liquid Crystals: Optics and Applications, 594701 (20 September 2005); https://doi.org/10.1117/12.620260