Translator Disclaimer
Paper
30 September 2005 Optical interconnect: a back end integration scheme for waveguides and optoelectronic InP components
Author Affiliations +
Abstract
Photonic on CMOS represents the combination of CMOS technology with integrated optics components. It can bring either a new functionality to the electronic circuit or the driving and the amplifying means to the optical components. In the first case, as global interconnections are expected to face severe limitations in the future, optical interconnects could be an alternative to electrical ones. An integration scheme for an optical signal distribution compatible with a Back End Of the Line microelectronic process is presented. Fabrication of the waveguides on top of Integrated Circuits is followed by the molecular bonding of InP dies, needed to perform the optoelectronic components (sources and detectors). Using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, optical layers and basic components necessary for an optical distribution were developed. Waveguides with low losses (L<2.5dB@1.3μm with Si3N4, L<17dB/cm @1.55μm for a:Si as long as compact 90° microbends and MultiMode Interferometer Beamsplitters were achieved. The molecular bonding of InP dies on CMOS wafers was studied for the integration of active components. The InP wafers are sawed to form mm2 square dies and are composed of the epitaxial active layers and especially with a sacrificial, etch-stop layer (InGaAs). Molecular bonding of the dies was performed at room temperature and the thickness of the SiO2 bonding layers ranges up to 1μm. After annealing, the dies can support dicing or other mechanical actions with no degradation of the optical properties.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. M. Fedeli, S. Jeannot, V. Jousseaume, L. Di Cioccio, M. Kostrzewa, R. Orobtchouk, P. Maury, and M. Zussy "Optical interconnect: a back end integration scheme for waveguides and optoelectronic InP components", Proc. SPIE 5956, Integrated Optics: Theory and Applications, 595607 (30 September 2005); https://doi.org/10.1117/12.623131
PROCEEDINGS
9 PAGES


SHARE
Advertisement
Advertisement
Back to Top