You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 June 2005Improved H.264/AVC video broadcast/multicast
This paper investigates the transmission of H.264 /AVC video in the 3GPP Multimedia Broadcast/Multicast Streaming service (MBMS). Application-layer forward error correction (FEC) codes are used to combat transmission errors in the radio access network. In this FEC protection scheme, the media RTP stream is organized into source blocks spanning many RTP packets, over which FEC repair packets are generated. This paper proposes a novel method for unequal error
protection that is applicable in MBMS. The method reduces the expected tune-in delay when a new user joins into a broadcast. It is based on four steps. First, temporally scalable H.264 /AVC streams are coded including reference and non-reference pictures or sub-sequences. Second, the constituent pictures of a group of pictures (GOP) are grouped according to their temporal scalability layer. Third, the interleaved packetization mode of RFC3984 is used to transmit the groups in ascending order of relevance for decoding. As an example, the non-reference pictures of a GOP are sent earlier than the reference pictures of the GOP. Fourth, each group is considered a source block for FEC coding and the strength of the FEC is selected according to its importance. Simulations show that the proposed method improves the quality of the received video stream and decreases the expected tune-in delay.