Translator Disclaimer
21 October 2005 SWIR to LWIR HgCdTe detectors and FPAs for remote sensing applications
Author Affiliations +
Remote sensing programs require detectors with a variety of wavelengths. One example of remote sensing applications is the GOES-ABI program that requires linear arrays of detectors with cutoff wavelengths ranging from the visible to the VLWIR (λc ~ 15 μm). In order to target the variety of remote sensing applications, an internal task was conducted to develop detectors and linear arrays operating under nominal remote sensing applications. SWIR [λc(295 K) ~ 2.5 μm] test detectors have been measured as a function of temperature between 170 K and 295 K. At 200 K the RoA values are in the 106 ohm-cm2 range. MWIR [λc(60 K) = 5.3 μm] and LWIR [λc(60 K) = 10.5 μm] HgCdTe detectors in a 320 x 6 array format have also been measured at 60 K. Within the arrays, the detector size is 40 μm x 50 μm. The MWIR detector array has a mean quantum efficiency of 89.2 % with a standard deviation to mean ratio, σ/μ = 1.51 %. The integration time for the focal plane array (FPA) measurements is 1.76 ms with a frame rate of 557.7 Hz. Operability values exceeding 99.5 % have been obtained. In addition, test diodes at the edge of the array that did not go through a read out integrated circuit (ROIC) were also measured and had quantum efficiency ~ 86 % that agreed well with the ~ 87 % quantum efficiency measured for detectors in the array that were located near the test detectors. The LWIR arrays, measured at 60K also had high operability with only ~ 3 % of the detectors having out of family response. Using best detector select (BDS) feature in the read out integrated circuit (ROIC), a feature that picks out the best detector in every row of six detectors, a 320 x 1 array with 100 % operability is obtained. For the 320 x1 array constituted using the BDS feature, a 100 % operable LWIR array with average NEI value of 1.94x1011 ph/cm2/s at a flux of 7.0x1014 ph/cm2/s has been demonstrated.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. I. D'Souza, M. G. Stapelbroek, L. Dawson, P. Ely, C. Yoneyama, J. Reekstin, H.-D. Shih, M. Skokan, T. Teherani, and J. Robinson "SWIR to LWIR HgCdTe detectors and FPAs for remote sensing applications", Proc. SPIE 5978, Sensors, Systems, and Next-Generation Satellites IX, 597818 (21 October 2005);


SWIR to LWIR HDVIP HgCdTe detector array performance
Proceedings of SPIE (May 18 2006)
2K X 2K molecular beam epitaxy HgCdTe detectors for the...
Proceedings of SPIE (September 29 2004)
Hybrid HgCdTe Arrays
Proceedings of SPIE (December 09 1983)
State-of-the-art HgCdTe infrared devices
Proceedings of SPIE (April 13 2000)
256 x 256 PACE 1 PV HgCdTe focal plane arrays...
Proceedings of SPIE (September 01 1990)

Back to Top