You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 October 2005The effectiveness and limitations of geometric and statistical spectral unmixing techniques for subpixel target detection in hyperspectral remote sensing
In the literature of spectral unmixing (SU), particularly for remote sensing applications, there are claims that both geometric and statistical techniques using independency as cost functions1-4, are very applicable for analysing hyperspectral imagery. These claims are vigorously examined and verified in this paper, using sets of simulated and real data. The objective is to study how effective these two SU approaches are with respected to the modality and independency of the source data. The data sets are carefully designed such that only one parameter is varied at a time. The 'goodness' of the unmixed result is judged by using the well-known Amari index (AI), together with a 3D visualisation of the deduced simplex in eigenvector space. A total of seven different algorithms, of which one is geometric and the others are statistically independent based have been studied. Two of the statistical algorithms use non-negative constraint of modelling errors (NMF & NNICA) as cost functions and the other four employ the independent component analysis (ICA) principle to minimise mutual information (MI) as the objective function. The result has shown that, the ICA based statistical technique is very effective to find the correct endmember (EM) even for the highly intermixed imagery, provided that the sources are completely independent. Modality of the data source is found to only have a second order impact on the unmixing capabilities of ICA based algorithms. All ICA based algorithms are seen to fail when the MI of sources are above 1, and the NMF type of algorithms are found even more sensitive to the dependency of sources. Typical independency of species found in the natural environment is in the range of 15-30. This indicates that, conventional statistical ICA and matrix factorisation (MF) techniques, are really not very suitable for the spectral unmixing of hyperspectral (HSI) data. Future work is proposed to investigate the idea of a dependent component clustering technique, a fused geometric and statistical approach, and couple these with a modification of the conventional ICA based algorithms to model the independency of the mixing, rather than the sources. This work formulates part of the research programme supported by the EMRS DTC established by the UK MOD.
Peter WT Yuen,A. Blagg, andG. Bishop
"The effectiveness and limitations of geometric and statistical spectral unmixing techniques for subpixel target detection in hyperspectral remote sensing", Proc. SPIE 5988, Electro-Optical Remote Sensing, 59880C (21 October 2005); https://doi.org/10.1117/12.629864
The alert did not successfully save. Please try again later.
Peter WT Yuen, A. Blagg, G. Bishop, "The effectiveness and limitations of geometric and statistical spectral unmixing techniques for subpixel target detection in hyperspectral remote sensing," Proc. SPIE 5988, Electro-Optical Remote Sensing, 59880C (21 October 2005); https://doi.org/10.1117/12.629864