You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 November 2005Influence of organic contamination on photomask performance
Contaminants and residues on the mask surface are still a concern to the Microlithography industry as they influence the reticle printing properties. It is conceivable that this effect will worsen as the industry moves toward smaller nodes for the next generation lithography, i.e. 193nm immersion and/or EUV.
The AUV5500 (advanced UV-cleaning and inspection) tool provides the possibility to investigate the effect of mask contaminants from transmission and reflection measurements in the spectral range 145nm to 270nm, and to clean the mask surface as well. In this paper, we are investigating the change of optical properties with organic contaminants on mask features and the ability to clean the surface to its original optical properties. At first we discuss the behavior of the 193nm illumination of the features on the mask properties. Then, with the help of a controlled contamination method to pollute the surface, we investigate the influence of the contaminant on the features on the photomask optical properties. The impact of the contaminant on AIMS data will be discussed as well.
The alert did not successfully save. Please try again later.
Christian Chovino, Stefan Helbig, Wolfgang Dieckmann, Karsten Bubke, Peter Dress, "Influence of organic contamination on photomask performance," Proc. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, 59923F (8 November 2005); https://doi.org/10.1117/12.632053