You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 November 2005Characteristics of resonant leaky-mode biosensors
This paper presents key properties and examples of applications of resonant leaky-mode biosensors operating in the subwavelength regime. The main resonance features observed under variation of input wavelength and angle are discussed. The dependence of the resonance lineshape on element design parameters is highlighted. The surface-localized power concentration at resonance is described along with the standing-wave pattern of the leaky modes obtained at normal incidence. An example fabrication process involving holographic patterning, etching, and deposition of high-index material is provided. The fabricated elements resonate well with good agreement between experiment and theory found. As examples of practical applications, experimental results on detection of proteins and bacteria are given. The tag-free resonant sensor technology demonstrated may be feasible for use in fields such as in medical diagnostics, drug development, environmental monitoring, and homeland security.
The alert did not successfully save. Please try again later.
R. Magnusson, Y. Ding, K. J. Lee, P. S. Priambodo, D. Wawro, "Characteristics of resonant leaky-mode biosensors," Proc. SPIE 6008, Nanosensing: Materials and Devices II, 60080U (17 November 2005); https://doi.org/10.1117/12.634094