You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 October 2005High index contrast photonics platform
A new low-loss high-index-contrast photonics platform has been developed for integrated optics and microwave photonics. The platform consists of a material system that has an index contrast that is adjustable from 0 to 25% and which is processed using conventional CMOS tools. The platform allows one to four orders of magnitude reduction in the size of optical components compared with conventional planar technologies. As an example, meter long path lengths occupy coils that are millimeters in diameter. Microwave photonic building blocks that are enabled include large bit count programmable delay lines for beam steering and shaping that fit in less than a square centimeter and which have delays controllable from 5 fsec to 10 nsec. Also enabled are arrays of high order tunable filters, a hundred micrometers in size, having linewidths ranging from tens of MHz to tens of GHz. These filters can be tuned over several hundred GHz, and when placed in Vernier architectures can be tuned across the C band (5 THz). An optical chip typically consists of dozens of optical elements. Each element is placed in its own micro-control loop that consists of a thin film heater for thermo-optic control and a thermistor for electronic feedback. The micro-control loops impart intelligence to the optical chip.
The alert did not successfully save. Please try again later.
Sai T. Chu, Brent E. Little, John V. Hryniewicz, Fred G. Johnson, Oliver King, Dave Gill, Wenlu Chen, Wei Chen, "High index contrast photonics platform," Proc. SPIE 6014, Active and Passive Optical Components for WDM Communications V, 60140E (24 October 2005); https://doi.org/10.1117/12.631065