You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 November 2005Statistical pattern recognition for rock joint images
As a cooperation project between Sweden and China, we sampled a number of rock specimens for analyze rock fracture network by optical image technique. The samples are resin injected, in which way; opened fractures can be seen clearly by means of UV (Ultraviolet) light illumination. In the study period, Recognition of rock fractures is crucial in many rock engineering applications. In order to successfully applying automatic image processing techniques for the problem of automatic (or semi-automatic) rock fracture detection and description, the key (and hardest task) is the automatic detection of fractures robustly in images. When statistical pattern recognition is used to segment a rock joint color image, features of different samples can be learned first, then, each pixel of the image is classified by these features. As the testing result showing, an attribute rock fracture image is segmented satisfactorily by using this way. The method can be widely used for other complicated images too. In this paper, Kernel Fisher discrimination (KFD) is employed to construct a statistical pattern recognition classifier. KFD can transform nonlinear discrimination in an attribute space with high dimension, into linear discrimination in a feature space with low dimension. While one needs not know the detailed mapping form from attribute space to feature space in the process of transformation. It is proved that this method performs well by segmenting complicated rock joint color images.
Weixing Wang andCui Bin
"Statistical pattern recognition for rock joint images", Proc. SPIE 6043, MIPPR 2005: SAR and Multispectral Image Processing, 60431N (3 November 2005); https://doi.org/10.1117/12.654930
The alert did not successfully save. Please try again later.
Weixing Wang, Cui Bin, "Statistical pattern recognition for rock joint images," Proc. SPIE 6043, MIPPR 2005: SAR and Multispectral Image Processing, 60431N (3 November 2005); https://doi.org/10.1117/12.654930