You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 November 2005Complicated self-similarity of terrain surface
Fractal describes the self-similar phenomenon of signal and self-similarity is the most important character of fractal. Pentland provides an excellent explanation of the ruggedness of natural surface. Fractal-based description of image texture has been used effectively in characterization and segmentation of natural scene. A real surface is self-similar over some range of scales, rather than over all scales. That imply self-similarity of a terrain surface is not always so perfect that keep invariable in whole scale space. To describe such self-similarity distribution, a self-similarity curve could be plotted and was divided into several linear regions. We present a new parameter called Self-similarity Degree (SD) in the similitude of information entropy to denote such self-similarity distribution. In addition, one general characterization of self-similarities is result of physical processes. Terrain surface are created by the interactional inogenic and exogenic processes. Hereby, we introduce self-similarity analysis and multifractal singularity spectrum to describe such complex physical field. By the self-similarity analysis and singularity spectrum, the different self-similar structures and the interaction of processes in terrain surface were depicted. Our studies have shown that self-similarity is a relative notion and natural scenes own abundant self-similar structures. Moreover, noises always destroy the self-similarity of original natural surface and change the singularity distribution of original surface.