You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 January 2006High aspect ratio plasma etching of bulk lead zirconate titanate
Lead Zirconate Titanate (PZT) is a high energy density active material with good piezoelectric coefficient and electromechanical coupling constant making it highly suitable for microsystems applications. In this paper, we present a rapid anisotropic high aspect ratio etching process for defining micron size features in PZT. We used an inductively coupled plasma reactive ion etching (ICP-RIE) system employing sulfur hexafluoride (SF6) and argon (Ar) based chemistry. A seed layer of Au/Cr was lithographically patterned onto fine lap finished PZT-4 substrates followed by electrodeposition of a thick 2-5 μm nickel on the seed layer, which acts as a hard mask during the etching process. The demonstrated technique was used to etch bulk PZT ceramic substrates, thereby opening possibilities for integration of bulk PZT substrates and structures into microsystems. A maximum etch rate of 19 μm/hr on PZT-4 and 25 μm/hr for PZT-5A compositions was obtained using 2000 W of ICP power, 475 W of substrate power, 5 sccm of SF6, and 50 sccm of Ar on PZT substrate. We have also demonstrated a high aspect ratio etch (>5:1) on a 3 μm feature size. Detailed analysis of the effects of ICP power, substrate power, and the etch gas composition on the etch rate of PZT are also presented in this article.
The alert did not successfully save. Please try again later.
Srimath S. Subasinghe, Abhijat Goyal, Srinivas A. Tadigadapa, "High aspect ratio plasma etching of bulk lead zirconate titanate," Proc. SPIE 6109, Micromachining and Microfabrication Process Technology XI, 61090D (23 January 2006); https://doi.org/10.1117/12.657751