You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 January 2006Extended damping model for out-of-plane comb driven micromirrors
Since damping is the limiting factor for the reachable maximum deflection, it is a very important issue in the context of resonant microsystems. In this paper, we present an optimized comb design and an extended damping model for out-of-plane scanning micromirrors. It bases on the compact analytical model published by Sandner et al. (at the SPIE conference Photonics Europe in 2004). The basic concept of this model is to attribute viscous damping in the comb gaps as the dominant contributor of damping moments. The model is extended by findings from a fluidmechanical FEM model of an electrode finger. It also considers the effects from pressure and temperature changes. The extended model is verified and discussed in the context of experimental results. The primary goal of damping analysis and optimization is to minimize power consumption and to reduce driving voltage. To consider that, the damping of the out-of-plane electrode comb is discussed in the context of its capacitance. One of the results presented in this paper is a out-of-plane comb-drive with optimized drive efficiency.
The alert did not successfully save. Please try again later.
Thomas Klose, Thilo Sandner, Harald Schenk, Hubert Lakner, "Extended damping model for out-of-plane comb driven micromirrors," Proc. SPIE 6114, MOEMS Display, Imaging, and Miniaturized Microsystems IV, 61140J (23 January 2006); https://doi.org/10.1117/12.645981