Translator Disclaimer
13 March 2006 Quantification of adipose tissue in a rodent model of obesity
Author Affiliations +
Obesity is a global epidemic and a comorbidity for many diseases. We are using MRI to characterize obesity in rodents, especially with regard to visceral fat. Rats were scanned on a 1.5T clinical scanner, and a T1W, water-spoiled image (fat only) was divided by a matched T1W image (fat + water) to yield a ratio image related to the lipid content in each voxel. The ratio eliminated coil sensitivity inhomogeneity and gave flat values across a fat pad, except for outlier voxels (> 1.0) due to motion. Following sacrifice, fat pad volumes were dissected and measured by displacement in canola oil. In our study of 6 lean (SHR), 6 dietary obese (SHR-DO), and 9 genetically obese rats (SHROB), significant differences in visceral fat volume was observed with an average of 29±16 ml increase due to diet and 84±44 ml increase due to genetics relative to lean control with a volume of 11±4 ml. Subcutaneous fat increased 14±8 ml due to diet and 198±105 ml due to genetics relative to the lean control with 7±3 ml. Visceral fat strongly correlated between MRI and dissection (R2 = 0.94), but MRI detected over five times the subcutaneous fat found with error-prone dissection. Using a semi-automated images segmentation method on the ratio images, intra-subject variation was very low. Fat pad composition as estimated from ratio images consistently differentiated the strains with SHROB having a greater lipid concentration in adipose tissues. Future work will include in vivo studies of diet versus genetics, identification of new phenotypes, and corrective measures for obesity; technical efforts will focus on correction for motion and automation in quantification.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David H. Johnson, Chris Flask, Dinah Wan, Paul Ernsberger, and David L. Wilson "Quantification of adipose tissue in a rodent model of obesity", Proc. SPIE 6143, Medical Imaging 2006: Physiology, Function, and Structure from Medical Images, 614302 (13 March 2006);

Back to Top