You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2006Nonrigid registration using regularization that accomodates local tissue rigidity
Regularized nonrigid medical image registration algorithms usually estimate the deformation by minimizing a cost function, consisting of a similarity measure and a penalty term that discourages "unreasonable" deformations. Conventional regularization methods enforce homogeneous smoothness properties of the deformation field; less work has been done to incorporate tissue-type-specific elasticity information. Yet ignoring the elasticity differences between tissue types can result in non-physical results, such as bone warping. Bone structures should move rigidly (locally), unlike the more elastic deformation of soft issues. Existing solutions for this problem either treat different regions of an image independently, which requires precise segmentation and incurs boundary issues; or use an empirical spatial varying "filter" to "correct" the deformation field, which requires the knowledge of a stiffness map and departs from the cost-function formulation. We propose a new approach to incorporate tissue rigidity information into the nonrigid registration problem, by developing a space variant regularization function that encourages the local Jacobian of the deformation to be a nearly orthogonal matrix in rigid image regions, while allowing more elastic deformations elsewhere. For the case of X-ray CT data, we use a simple monotonic increasing function of the CT numbers (in HU) as a "rigidity index" since bones typically have the highest CT numbers. Unlike segmentation-based methods, this approach is flexible enough to account for partial volume effects. Results using a B-spline deformation parameterization illustrate that the proposed approach improves registration accuracy in inhale-exhale CT scans with minimal computational penalty.
The alert did not successfully save. Please try again later.
Dan Ruan, Jeffrey A. Fessler, Michael Roberson, James Balter, Marc Kessler, "Nonrigid registration using regularization that accommodates local tissue rigidity," Proc. SPIE 6144, Medical Imaging 2006: Image Processing, 614412 (10 March 2006); https://doi.org/10.1117/12.653870