You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2006Quantitative analysis of two-phase 3D+time aortic MR images
Automated and accurate segmentation of the aorta in 3D+time MR image data is important for early detection of connective tissue disorders leading to aortic aneurysms and dissections. A computer-aided diagnosis method is reported that allows the objective identification of subjects with connective tissue disorders from two-phase 3D+time aortic MR images. Our automated segmentation method combines level-set and optimal border detection. The resulting aortic lumen surface was registered with an aortic model followed by calculation of modal indices of aortic shape and motion. The modal indices reflect the differences of any individual aortic shape and motion from an average aortic behavior. The indices were input to a Support Vector Machine (SVM) classifier and a discrimination model was constructed. 3D+time MR image data sets acquired from 22 normal and connective tissue disorder subjects at end-diastole (R-wave peak) and at 45% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta from the left-ventricular outflow tract to the diaphragm and yielded subvoxel accuracy with signed surface positioning errors of -0.09±1.21 voxel (-0.15±2.11 mm). The computer aided diagnosis method distinguished between normal and connective tissue disorder subjects with a classification correctness of 90.1 %.
The alert did not successfully save. Please try again later.
Fei Zhao, Honghai Zhang, Nicholas E. Walker M.D., Fuxing Yang, Mark E. Olszewski, Andreas Wahle, Thomas Scholz M.D., Milan Sonka M.D., "Quantitative analysis of two-phase 3D+time aortic MR images," Proc. SPIE 6144, Medical Imaging 2006: Image Processing, 614423 (10 March 2006); https://doi.org/10.1117/12.652763