You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2006Integrated system for ultrasonic, photoacoustic and elasticity imaging
A hybrid imaging system is proposed for cancer detection, diagnosis and therapy monitoring by integrating
three complementary imaging techniques - ultrasound, photoacoustic and elasticity imaging. Indeed, simultaneous
imaging of the anatomy (ultrasound imaging), cancer-induced angiogenesis (photoacoustic imaging) and changes in
biomechanical properties (elasticity imaging) of tissue is based on many synergistic features of these modalities and
may result in a unique and important imaging tool. To facilitate the design and development of a real-time imaging
system for clinical applications, we have investigated the core components of the imaging system using numerical
simulations. Differences and similarities between each imaging technique were considered and contrasted. The results
of our study suggest that the integration of ultrasound, photoacoustic and elasticity imaging is possible using a custom
designed imaging system.
The alert did not successfully save. Please try again later.
S. Park, J. Shah, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, A. Gopal, H. Moon, X. J. Zhang, W. G. Scott, S. Y. Emelianov, "Integrated system for ultrasonic, photoacoustic and elasticity imaging," Proc. SPIE 6147, Medical Imaging 2006: Ultrasonic Imaging and Signal Processing, 61470H (16 March 2006); https://doi.org/10.1117/12.661508