You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 March 2006Minimizing CD measurement bias through realtime acquisition of 3D feature shapes
CD measurement bias has long been reported as an inherent artifact of CD-SEM measurements. However, as feature dimensions decrease and line-to-space ratios increase, the magnitude of previously acceptable levels of measurement bias requires re-examination. Traditional attempts at correcting the bias has entailed slow, destructive or laborious techniques, such as comparisons of top-down CD-SEM measurements using standard algorithms with cross-section information, or correlating top-down data with complex tilted images.
In this paper we expand the application of Critical Shape Metrology - a physics-based metrology technique for 3-D profile acquisition based on CD-SEM, to minimizing CD bias in real-time for a variety of feature dimensions and profiles. Samples used for the experiments were fabricated through E-Beam lithography and 193 lithography with a wide variation of sidewall angles and CDs, so that the measurement bias could be assessed over a sufficiently large range of patterned shapes. Reference measurements were performed using a CD-AFM and FIB-SEM
The alert did not successfully save. Please try again later.
Johann Foucher, Dmitry Gorelikov, Marc Poulingue, Pascal Fabre, Ganesh Sundaram, "Minimizing CD measurement bias through real-time acquisition of 3D feature shapes," Proc. SPIE 6152, Metrology, Inspection, and Process Control for Microlithography XX, 61521A (24 March 2006); https://doi.org/10.1117/12.660233