You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 April 2006Application of a micromachined translatory actuator to an optical FTIR spectrometer
We present a Fourier-transform infrared (FTIR) spectrometer where a micro-electro-opto-mechanical system (MOEMS) replaces the macroscopic mirror drive enabling a miniaturized, robust and low cost system. The MOEMS devices are manufactured in a CMOS compatible process on a Silicon on insulator (SOI) substrate. The device consists of a metallized actuator plate with an area of 1.65 mm2 acting as mirror, bearing springs and electrodes for the electrostatic drive. Due to the driving principle based on in-plane electrode combs, 200 μm translatory displacement can be achieved with comparatively low voltages (<40 V) at an ambient pressure below 500 Pa. The actuator operates at a resonant frequency of 5 kHz. Consequently this yields a maximum spectral resolution of 25 cm-1 and an acquisition time of 200 μs per spectrum. Based on a Michelson setup the infrared optical bench of the presented FTIR system is designed to account for the mirror aperture and the desired spectral bandwidth of 2 μm to 5μm. The integrated signal processing electronics has to cope with a bandwidth of 8 MHz as a result of the mirror motion. A digital signal processor manages system control and data processing. Furthermore, high-level analysis algorithms can be applied without the need of an external PC. The high acquisition rate and integration level of the system makes it appropriate for applications like process control and surveillance of fast reactions. First results of transmission and absorbance measurements are shown.
The alert did not successfully save. Please try again later.
Andreas Kenda, Christian Drabe, Harald Schenk, Albert Frank, Martin Lenzhofer, Werner Scherf, "Application of a micromachined translatory actuator to an optical FTIR spectrometer," Proc. SPIE 6186, MEMS, MOEMS, and Micromachining II, 618609 (21 April 2006); https://doi.org/10.1117/12.662008