You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 April 2006Study of non-solitonic blue-green radiation generated in mm-long photonic crystal fibers
We demonstrate highly-efficient generation of green-blue light using 20-fs femtosecond laser pulses propagating in short highly-nonlinear photonic crystal fibres. Three 5-mm-long fibres with different zero dispersion wavelengths were pumped by Ti:Sapphire pulses centred around 800-nm, and the relevant spectral characteristics of the generated radiation were studied as a function of pulse energy and chirp. In addition to the non-solitonic green-blue light, a well-defined infrared peak was simultaneously observed that follows the same power and wavelength dependence found on the green-blue peak. This work shows that short photonic crystal fibres can be used as an efficient source of ultrashort blue-green pulses (and possibly near-IR pulses) since linear dispersion (and consequent temporal broadening) and absorption of fused silica are minimized when using short fibres.
The alert did not successfully save. Please try again later.
Alexandra A. Amorim, Helder M. Crespo, Miguel Miranda, João L. Silva, Luis M. Bernardo, "Study of non-solitonic blue-green radiation generated in mm-long photonic crystal fibers," Proc. SPIE 6187, Photon Management II, 618717 (25 April 2006); https://doi.org/10.1117/12.662814