You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 May 2006A flexible hyperspectral simulation tool for complex littoral environments
This work describes a visualization tool and sensor testbed that can be used for assessing the performance of both instruments and human observers in support of port and harbor security. Simulation and modeling of littoral environments must take into account the complex interplay of incident light distributions, spatially correlated boundary interfaces, bottom-type variation, and the three-dimensional structure of objects in and out of the water. A general methodology for a two-pass Monte Carlo solution called Photon Mapping has been adopted and developed in the context of littoral hydrologic optics. The resulting tool is an end-to-end technique for simulating spectral radiative transfer in natural waters. A modular design allows arbitrary distributions of optical properties, geometries, and incident radiance to be modeled effectively. This tool has been integrated as part of the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. DIRSIG has an established history in multi and hyperspectral scene simulation of terrain targets ranging from the visible to the thermal infrared (0.380 - 20.0 microns). This tool extends its capabilities to the domain of hydrologic optics and can be used to simulate and develop active/passive sensors that could be deployed on either aerial or underwater platforms. Applications of this model as a visualization tool for underwater sensors or divers are also demonstrated.
The alert did not successfully save. Please try again later.
Adam Goodenough, Rolando Raqueño, Michael Bellandi, Scott Brown, John Schott, "A flexible hyperspectral simulation tool for complex littoral environments," Proc. SPIE 6204, Photonics for Port and Harbor Security II, 62040F (12 May 2006); https://doi.org/10.1117/12.665827