You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 May 2006An optically triggered I-RTD hybrid device for continous-wave generation of THz oscillations
Dwight Woolard,1,2 Weidong Zhang,1 Elliott Brown,3 Boris Gelmont,4 Robert Trew1
1North Carolina State Univ. (United States) 2U.S. Army Research Lab. (United States) 3Univ. of California, Santa Barbara (United States) 4Univ. of Virginia (United States)
A novel optically-triggered (OT) interband resonant-tunneling-diode (I-RTD) device (based on AlGaSb/InAs/AlGaSb
heterostructures) concept for generating terahertz (THz) frequency oscillations has been previously presented that shows
promise for achieving enhanced output power levels under pulsed operation. The main concept is to utilize novel
nanoscale mechanisms to achieve an externally driven relaxation oscillation that consists of two phases. Namely, the
first phase is a valence band (VB) well hole-charging transient produced by a natural Zener (interband) tunneling
process and the second is a discharging transient induced by optical annihilation of the VB well hole-charge by
externally-injected photon flux. While the initial simulation results for a practical diode-laser implementation clearly
show the superiority of this new oscillator concept (i.e., excellent output power capability, ~10mW, over broad portions
of the THz regime, ~300-600GHz), the specific optical-triggering conditions required by the AlGaSb/InAs based
material systems (i.e., photonic-energy ~4.7 μm, intensity level ~3.5x107 W/cm2 and a pulse repetition frequency (PRF)
equal to the THz oscillation period) are technically too demanding to meet for continuous-wave (CW) mode operation.
Hence, this paper will report on variations and extensions of the original OT-I-RTD oscillator concept. Specifically,
modifications to the device structure will be considered to allow for OT operation at 1.55 μm where the optical
technology is more robust. Here the specific focus will be in the introduction of In1-xGaxAs /GaSbyAs1-y hetero-systems
and the application of band-engineering to assess the potential of a 1.55 μm based OT-I-RTD oscillator design.
The alert did not successfully save. Please try again later.
Dwight Woolard, Weidong Zhang, Elliott Brown, Boris Gelmont, Robert Trew, "An optically triggered I-RTD hybrid device for continous-wave generation of THz oscillations," Proc. SPIE 6212, Terahertz for Military and Security Applications IV, 621207 (8 May 2006); https://doi.org/10.1117/12.665820