You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2006Modeling the PDF for the irradiance of an uplink beam in the presence of beam wander
Recent studies of ground-to-space beam propagation have revealed significant departures from Rytov theory when the beam diameter w0 is on the order of the atmospheric coherence width r0. It has been shown that such departures from Rytov theory are primarily a consequence of beam wander and other low-order aberrations. In this paper we discuss modeling of the probability density function (PDF) for uplink beams. In particular, we show how the PDF transitions from lognormal statistics when w0/r0 << 1 to the negative exponential distribution when w0/r0 >> 1. The most interesting regime is the transition region near w0/r0 = 1, where the statistical behavior of tracked and untracked beams differs significantly.
The alert did not successfully save. Please try again later.
Ronald Parenti, Richard J. Sasiela, Larry C. Andrews, Ronald L. Phillips, "Modeling the PDF for the irradiance of an uplink beam in the presence of beam wander," Proc. SPIE 6215, Atmospheric Propagation III, 621508 (17 May 2006); https://doi.org/10.1117/12.666547