You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2006Investigation of the feasibility of fast neutron analysis for detection of buried landmines
Nuclear methods have long been one of the few techniques available to aid in the detection and identification of potentially dangerous objects in a non-intrusive manner. The application of neutron-based methods has been particularly successful in bulk material detection and identification, owing to the neutron's capability to penetrate deep into materials, and its nuclide-specific interactions which can be used to make direct measurements of a target's elemental composition. Defence R&D Canada - Suffield's initial work in the area of penetrating radiation resulted in the development of the recently commercialized Minespec, a Thermal Neutron Analysis (TNA) system for buried-explosives detection. Co-developed with Bubble Technology Industries Inc., as the confirmation detector for a multi-sensor anti-tank landmine detection system, continuing improvements to the TNA system have included the inclusion of an electronic pulsed neutron generator - an upgrade that presents the possibility of utilizing Fast Neutron Analysis (FNA) methods to improve the system's detection capability. In this paper we will discuss the Minespec system and report on our investigations regarding the possibility for incorporating an FNA component to provide complementary information to assist in anti-tank landmine detection.
The alert did not successfully save. Please try again later.
Anthony A. Faust, John E. McFee, H. Robert Andrews, Harry Ing, "Investigation of the feasibility of fast neutron analysis for detection of buried landmines," Proc. SPIE 6217, Detection and Remediation Technologies for Mines and Minelike Targets XI, 62172C (18 May 2006); https://doi.org/10.1117/12.668898