You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2006Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection
A multilayer surface-enhanced Raman scattering (SERS) substrate geometry providing
significantly greater SERS enhancements, longer active lifetimes, better reproducibility, and lower
detection limits for trace chemical analysis than traditional SERS substrates has been developed. We
have fabricated and characterized this novel class of multilayered metal film-based SERS substrates,
which are capable of enhancing SERS signals over an order of magnitude relative to conventional
metal film over nanostructure substrates. These multilayer enhanced metal film substrates are
fabricated by repeated vapor deposition of metal films over nanometer sized structures. Different
sizes of nanostructures were evaluated in order to obtain the optimal SERS enhancements.
Meanwhile, different dielectric coatings were fabricated between silver layers, and SERS
enhancements were evaluated for each type. Additionally, different metals, such as gold, were used
to further optimize the stability and reproducibility of these novel substrates. Silver oxide layers
produced at elevated temperatures were also investigated to accelerate the fabrication rate of these
multilayer substrates. Finally, this paper also discusses the application of these novel multilayer
substrates for trace detection of chemical agents and simulants.
The alert did not successfully save. Please try again later.
Honggang Li, Caitlin E. Baum, Jian Sun, Brian M. Cullum, "Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection," Proc. SPIE 6218, Chemical and Biological Sensing VII, 621804 (19 May 2006); https://doi.org/10.1117/12.668935