You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2006Diffractive optics for Moon topography mapping
This paper presents the design, analysis, and testing of a diffractive optical element (DOE) to be part of the Lunar Orbiter Laser Altimeter (LOLA) instrument scheduled to launch in 2008. LOLA will be one of six instruments to orbit the Moon for a year or more as part of the Lunar Reconnaissance Orbiter (LRO). The various scientific instruments aboard the LRO will map the lunar environment in greater detail than ever before. LOLA will produce a topographic map of the Moon from a nominal 50km orbit during the one-year mission. LOLA works by bouncing laser pulses off the lunar surface as it orbits the Moon. By measuring the time it takes for light to travel to the surface and back, LOLA can calculate the roundtrip distance. Each pulse consists of five laser spots in a cross-like pattern spanning about 50 meters of the lunar surface. The spots are generated by a DOE from the single, collimated LOLA laser input beam. It is projected that LOLA will gather more than a billion measurements of the Moon's surface elevation creating a high resolution three-dimensional map of the surface.
The alert did not successfully save. Please try again later.
John G. Smith, Luis Ramos-Izquierdo, Andrew Stockham, Stan Scott, "Diffractive optics for Moon topography mapping," Proc. SPIE 6223, Micro (MEMS) and Nanotechnologies for Space Applications, 622304 (18 May 2006); https://doi.org/10.1117/12.665539