You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2006Segmented MEMS deformable-mirror technology for space applications
This paper presents MEMS deformable-mirror technology under development at Iris AO. The hybrid approach uses surface-micromachining techniques to fabricate actuator arrays. High-fill-factor mirror arrays are flip-chip bonded on top of these actuator arrays. The single-crystal-silicon mirror segments provide robust substrates for optical coating with excellent surface quality (6-20 nm rms surface-figure errors). The hexagonally close-packed segments are 350 μm on a side, and can thus provide high-spatial frequency corrections in a small form factor.
High-stroke actuation of greater than >7.5 μm has been experimentally verified while keeping actuation voltages within reasonable bounds (<130 V). Three electrodes under each actuator allow for piston/tip/tilt motion. An open-loop controller has been demonstrated to position a 37-segment array resulting in a flattened array with only 19 nm rms of surface figure error.
The alert did not successfully save. Please try again later.
Michael A. Helmbrecht, Thor Juneau, Matthew Hart, Nathan Doble, "Segmented MEMS deformable-mirror technology for space applications," Proc. SPIE 6223, Micro (MEMS) and Nanotechnologies for Space Applications, 622305 (18 May 2006); https://doi.org/10.1117/12.666353