You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2006Nonlinear tracking evaluation using absolute and relative metrics
Tracking performance is a function of data quality, tracker type, and target maneuverability. Many contemporary tracking methods are useful for various operating conditions. To determine nonlinear tracking performance independent of the scenario, we wish to explore metrics that highlight the tracker capability. With the emerging relative track metrics, as opposed to root-mean-square error (RMS) calculations, we explore the Averaged Normalized Estimation Error Squared (ANESS) and Non Credibility Index (NCI) to determine tracker quality independent of the data. This paper demonstrates the usefulness of relative metrics to determine a model mismatch, or more specifically a bias in the model, using the probabilistic data association filter, the unscented Kalman filter, and the particle filter.
The alert did not successfully save. Please try again later.
Erik P. Blasch, Andy Rice, Chun Yang, "Nonlinear tracking evaluation using absolute and relative metrics," Proc. SPIE 6236, Signal and Data Processing of Small Targets 2006, 62360L (19 May 2006); https://doi.org/10.1117/12.666463