You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 June 2006Monte-Carlo imaging for optical interferometry
We present a flexible code created for imaging from the bispectrum and V2. By using a simulated annealing method, we limit the probability of converging to local chi-squared minima as can occur when traditional imaging methods are used on data sets with limited phase information. We present the results of our code used on a simulated data set utilizing a number of regularization schemes including maximum entropy. Using the statistical properties from Monte-Carlo Markov chains of images, we show how this code can place statistical limits on image features such as unseen binary companions.
The alert did not successfully save. Please try again later.
Michael J. Ireland, John D. Monnier, Nathalie Thureau, "Monte-Carlo imaging for optical interferometry," Proc. SPIE 6268, Advances in Stellar Interferometry, 62681T (28 June 2006); https://doi.org/10.1117/12.670940