You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 June 2006Calibration techniques for next-generation astronomical systems
Historically, few astronomical measurements have required sub-percent accuracy in photometry. Measuring SNIa fluxes
in order to determine cosmological parameters, however, often requires the comparison of images from different
telescopes, and at different redshifts. This can introduce a myriad of sources of error. Conventional methods of data
reduction are intrinsically flawed, either making assumptions about the effects of wavelength dependence in the response
function of the system or, when K-corrections are not performed, neglecting them altogether. We consider the
advantages of a method utilizing a direct, spectrally-resolved measurement of the entire system's response function
relative to a calibrated photodiode.
The alert did not successfully save. Please try again later.
S. Slater, C. W. Stubbs, J. L. Tonry, J. R. Masiero, R. C. Smith, "Calibration techniques for next-generation astronomical systems," Proc. SPIE 6269, Ground-based and Airborne Instrumentation for Astronomy, 626921 (29 June 2006); https://doi.org/10.1117/12.670144