You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 June 20060.250mm-thick CCD packaging for the Dark Energy Survey Camera array
The Dark Energy Survey Camera focal plane array will consist of 62 2k x 4k CCDs with a pixel size of 15 microns and
a silicon thickness of 250 microns for use at wavelengths between 400 and 1000 nm. Bare CCD die will be received
from the Lawrence Berkeley National Laboratory (LBNL). At the Fermi National Accelerator Laboratory, the bare die
will be packaged into a custom back-side-illuminated module design. Cold probe data from LBNL will be used to
select the CCDs to be packaged. The module design utilizes an aluminum nitride readout board and spacer and an Invar
foot. A module flatness of 3 microns over small (1 sqcm) areas and less than 10 microns over neighboring areas on a
CCD are required for uniform images over the focal plane. A confocal chromatic inspection system is being developed
to precisely measure flatness over a grid up to 300 x 300 mm. This system will be utilized to inspect not only room-temperature
modules, but also cold individual modules and partial arrays through flat dewar windows.
The alert did not successfully save. Please try again later.
Gregory Derylo, H. Thomas Diehl, Juan Estrada, "0.250mm-thick CCD packaging for the Dark Energy Survey Camera array," Proc. SPIE 6276, High Energy, Optical, and Infrared Detectors for Astronomy II, 627608 (5 June 2006); https://doi.org/10.1117/12.672505